SIDE-BY-SIDE REFRIGERATOR

Model:
RS2533SW
A newly developed SAMSUNG side by side refrigerator in 2002 has the following characteristics.

1) Twin Cooling System
 - The refrigerator and the freezer have two evaporators. Given this independent system, the freezer and the refrigerator are cooled individually as required and are, therefore, more efficient. Food odor from the refrigerator does not affect food in the freezer due to separate air flow circulation.

2) Multi-Flow System
 - Cool air circulates through multiple vents on every shelf level. This provides even distribution of cooling inside cabinets to keep your food fresh longer.

3) Xtra Space™
 - Vertical room next to the ice maker in the freezer provides space for pizza etc.

4) Door Alarm
 - Beep sound reminds you the door is open.

5) Xtra Fresh™
 - Optimized humidity control keeps vegetables & fruits fresh.

6) Deodorizer
 - Reusable twin deodorizers keep the refrigerator air fresh and odor free.

7) CoolSelect Zone™ Drawer(RS2555, RS2577)
 - User can select Quick Cool, Thaw and Select buttons for quickly chill, thaw and cool items. Select Soft freeze, Chill, and Cool to control the temperature of the drawer.
2. INSTALLATION

1) **To protect refrigerator in movement**
Use padded hand truck as shown. If entrance width is less than 39”, remove doors prior to installation and reattach doors according to procedure below.

2) **Remove all protective tape and pad in refrigerators.**
Connect water lines and power cord. Adjust the clearance between the doors.

3) **Set the temperature control to the temperature and wait for an hour.**
The refrigerator should get slightly chilled and the motor runs smoothly.

4) **Once the refrigerator temperature is sufficiently low**
You can store food in the refrigerator. After starting the refrigerator, it takes a few hours to reach the appropriate temperature.

• Removing Doors

Open the freezer and refrigerator doors, and then take off the front leg cover assembly by turning the three screws counter-clockwise. Remove the screw from clamp disconnect, the water tube by pressing the coupler, and pulling the water tube away.

With the door closed, remove the upper hinge cover using a screwdriver, and then disconnect the wires. Remove hinge screws and ground screw counter-clockwise, and take off the upper hinge. Take care removing the door to ensure that it does not fall on you.

Remove the door from the lower hinge by carefully lifting the door so as not to damage the water tube. Remove the lower hinge from the lower hinge bracket by lifting the lower hinge.

• Attaching Doors

Insert the lower hinge in the bracket lower hinge. Attach the freezer door by inserting the hose in the lower side of the door into the hole in the lower hinge and pulling the hose down.

Insert the upper hinge shaft into the hole. After leveling between the upper hinge hole and the hole of the cabinet. Reattach hinge screws and screw in the clockwise direction. Connect the wires. Put the front part of the upper hinge cover on the front part of the upper hinge and reattach from the front part of the upper hinge cover first.

<table>
<thead>
<tr>
<th>Removing Doors</th>
<th>Attaching Doors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open the freezer and refrigerator doors, and then take off the front leg cover assembly by turning the three screws counter-clockwise. Remove the screw from clamp disconnect, the water tube by pressing the coupler, and pulling the water tube away. With the door closed, remove the upper hinge cover using a screwdriver, and then disconnect the wires. Remove hinge screws and ground screw counter-clockwise, and take off the upper hinge. Take care removing the door to ensure that it does not fall on you. Remove the door from the lower hinge by carefully lifting the door so as not to damage the water tube. Remove the lower hinge from the lower hinge bracket by lifting the lower hinge.</td>
<td>Insert the lower hinge in the bracket lower hinge. Attach the freezer door by inserting the hose in the lower side of the door into the hole in the lower hinge and pulling the hose down. Insert the upper hinge shaft into the hole. After leveling between the upper hinge hole and the hole of the cabinet. Reattach hinge screws and screw in the clockwise direction. Connect the wires. Put the front part of the upper hinge cover on the front part of the upper hinge and reattach from the front part of the upper hinge cover first.</td>
</tr>
</tbody>
</table>
3. Nomenclature

2002 Models

Product: R - REFRIGERATOR

Family:
- S - SIDE BY SIDE (SBS)
- H - HomePAD™ (SIDE BY SIDE)
- B - BOTTOM MOUNTED FREEZER (BMF)

Color:
- SBS SW-SNOW WHITE SL-NOBLE STAIN
- BMF SW-SNOW WHITE SL-NOBLE GRAY

Option:
- SBS 33-GOOD 55-BETTER 77-BEST
- BMF 55-NO DISPENSER 77-DISPENSER

Capacity: CU. FT

Company Name

Label Location
4. Specifications

ELECTRICAL SPECIFICATIONS

Defrost Control From 24 to 32 hrs
Thermo-Bimetal 54 °F (off)/23 °F (on)
Defrost Thermistor (502AT) 50 °F (off)
Electrical Rating AC115V 60Hz, 4.8 Amps
Maximum Current Leakage 0.25 mA
Maximum Ground Path Resistance 0.1 Ohm
Energy Consumption KWH/mo.

NO LOAD PERFORMANCE

Ambient Temperature 70 °F 90 °F
Refrigerator, °F 34~46 34~46
Freezer, °F -14~8 -14~8
Run Time, % <40 <60

REFRIGERATION SYSTEM

Refrigerant Charge (R134a) 7.76 oz
Compressor (MK183C-L2U) 532.3 Btu/hr
Compressor oil Freol α -15
Capillary tube (Dia, Length) 0.033 " , 130 "
Dryer Molecular Sieve XH-9

MODELS

RS2533(Good), RS2555(Better), RS2577(Best)

INSTALLATION

Clearance must be provided for air circulation
AT TOP .. 1 "
AT SIDES 0.1 "
AT REAR 1 "

Diagram:
- Fan
- Heat exchanger
- Compressor
- Sub-condenser
- Dryer
- C-Fan
- Electric box

Legend:
- Freezer
- Refrigerator
5. Warranty information

SAMSUNG REFRIGERATOR
(18 Cubic Feet and Larger Capacity)

LIMITED WARRANTY TO ORIGINAL PURCHASER

This SAMSUNG brand product, as supplied and distributed by Samsung Electronics America, Inc. (SAMSUNG) and delivered new, in the original carton to the original consumer purchaser, is warranted by SAMSUNG against manufacturing defects in materials and workmanship for a limited warranty period of:

One (1) Year Parts and Labor on Refrigerator
Five (5) Years Parts and Labor on Sealed Refrigeration System Only* (*Compressor, evaporator, condenser, drier, connecting tubing)

This limited warranty begins on the original date of purchase, and is valid only on products purchased and used in the United States. To receive warranty service, the purchaser must contact SAMSUNG for problem determination and service procedures. Warranty service can only be performed by a SAMSUNG authorized service center. The original dated bill of sale must be presented upon request as proof of purchase to SAMSUNG or SAMSUNG’s authorized service center.

SAMSUNG will repair or replace any part found to be defective, at our option and at no charge as stipulated herein, with new or reconditioned parts during the limited warranty period specified above. All replaced parts and products become the property of SAMSUNG and must be returned to SAMSUNG. Replacement parts and products assume the remaining original warranty, or ninety (90) days, whichever is longer.

In-home service will be provided during the warranty labor period subject to availability within the contiguous United States. In-home service is not available in all areas. To receive in-home service, the product must be unobstructed and accessible from floor level to service personnel. If during in-home service repair cannot be completed, it may be necessary to remove, repair and return the product. If in-home service is unavailable, SAMSUNG may elect, at our option, to provide for transportation of our choice to and from a SAMSUNG authorized service center. Otherwise, transportation to and from the SAMSUNG authorized service center is the responsibility of the purchaser.

This limited warranty covers manufacturing defects in materials and workmanship encountered in normal, noncommercial use of this product, and shall not apply to the following, including, but not limited to: damage which occurs in shipment; delivery and installation; applications and uses for which this product was not intended; altered product or serial numbers; cosmetic damage or exterior finish; accidents, abuse, neglect, fire, water, lightning or other acts of nature; use of products, equipment, systems, utilities, services, products, supplies, accessories, applications, installations, repairs, external plumbing and leaks, external wiring, circuit breakers, fuses or connectors not supplied and authorized by SAMSUNG, or which damage this product or result in service problems; incorrect electrical line voltage, fluctuations and surges; customer adjustments and failure to follow operating instructions, cleaning, maintenance and environmental instructions that are covered and prescribed in the instruction book; loss of food due to spoilage; consumable items including filters and light bulbs.

THERE ARE NO EXPRESS WARRANTIES OTHER THAN THOSE LISTED AND DESCRIBED ABOVE, AND NO WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, SHALL APPLY AFTER THE EXPRESS WARRANTY PERIODS STATED ABOVE, AND NO OTHER EXPRESS WARRANTY OR GUARANTY GIVEN BY ANY PERSON, FIRM OR CORPORATION WITH RESPECT TO THIS PRODUCT SHALL BE BINDING ON SAMSUNG. SAMSUNG SHALL NOT BE LIABLE FOR LOSS OF REVENUE OR PROFITS, FAILURE TO REALIZE SAVINGS OR OTHER BENEFITS, OR ANY OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES CAUSED BY THE USE, MISUSE OR INABILITY TO USE THIS PRODUCT REGARDLESS OF THE LEGAL THEORY ON WHICH THE CLAIM IS BASED, AND EVEN IF SAMSUNG HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. NOR SHALL RECOVERY OF ANY KIND AGAINST SAMSUNG BE GREATER IN AMOUNT THAN THE PURCHASE PRICE OF THE PRODUCT SOLD BY SAMSUNG AND CAUSING THE ALLEGED DAMAGE. WITHOUT LIMITING THE FOREGOING, PURCHASER ASSUMES ALL RISK AND LIABILITY FOR LOSS, DAMAGE OR INJURY TO PURCHASER AND PURCHASER'S PROPERTY AND TO OTHERS AND THEIR PROPERTY ARISING OUT OF THE USE, MISUSE OR INABILITY TO USE THIS PRODUCT SOLD BY SAMSUNG NOT CAUSED DIRECTLY BY THE NEGLIGENCE OF SAMSUNG. THIS LIMITED WARRANTY SHALL NOT EXTEND TO ANYONE OTHER THAN THE ORIGINAL PURCHASER OF THIS PRODUCT, IS NONTRANSFERABLE AND STATES YOUR EXCLUSIVE REMEDY.

Some states do not allow limitations on how long an implied warranty lasts, or the exclusion or limitation of incidental or consequential damages, so the above limitations or exclusions may not apply to you. This warranty gives you specific legal rights, and you may also have other rights, which vary from state to state.

To obtain warranty service, please contact SAMSUNG at:
6. Interior Views and Dimensions

6-1) Shelves and Bins

Freezer

- Xtra Space™
- Door Bin
- Ice Maker
- Light
- Ice Chute
- Glass Shelf
- Wire Shelf
- Light Switch
- Pockets
- Plastic Drawers
- Wire Drawers
- Front Leg Cover

RS2533 Model
RS2577 Model with CoolSelect Zone™
RS2555 Model with CoolSelect Zone™

Refrigerator

- Water Filter
- Light (upper)
- Spill Proof glass Shelf
- Light Switch
- Foldable Shelf (RS2577)
- Twin Deodorizer
- Egg Container
- CoolSelect Zone™ Drawer (Chilled Bin for RS2533)
- Dairy Compartment
- Wine Shelf (RS2577)
- Gallon Door Bin
- Beverage Station™ (RS2577)
- Lights (lower) (RS2555, 2577)
- Door Bin Top Lips
- Gallon Door Bins
- Fruit Drawers & Vegetable
7. Refrigeration Cycle and Cool Air Circulation Route

7-1) Refrigerant Route in Refrigeration cycle

Compressor → Sub-condenser → Side Cluster Pipe(FRE) → Side Cluster Pipe(REF) → Hot Pipe
→ Dryer → Capillary Tube → Refrigerator Evaporator → Freezer Evaporator → Suction Pipe → Compressor
Refrigeration Cycle and Cool Air Circulation Route

7-2) Cool Air Circulation

Diagram of cool air circulation route with arrows indicating the flow of air from the freezer to the refrigerator.
8. Mechanical Disassembly

8-1) Refrigerator Disassembly

Control Panel .. 14
Door Handle ... 14
Beverage Station™ ... 14
Door Gasket ... 14
Refrigerator Door Light Switch 15
Refrigerator Light ... 15
Tempered Glass Shelf 15
Plastic Drawers in Refrigerator 15
Gallon Door Bin .. 15
Water Filter ... 16
Evaporator Cover in the Refrigerator 16
Upper Ductwork .. 16
Evaporator Fan Motor 16
Evaporator in Refrigerator 17
Refrigerator Thermistor 17
CoolSelect Zone™ Thermistor 17

8-2) Freezer Disassembly

Door Bin in Freezer .. 18
Freezer Door Light Switch 18
Plastic(Wire) Drawer in Freezer 18
Freezer Shelf .. 18
Ice Dispenser & Ice Maker 18
Auger Motor Case .. 19
Freezer Light .. 20
Evaporator Cover in Freezer 20
Upper Ductwork .. 20
Evaporator Fan Motor 20
Evaporator in Freezer 21
Freezer Thermistor ... 21
Ambient Thermistor 21
Ice-Maker Thermistor 21

8-3) Machine Compartment Disassembly

Machine Compartment & Electrix Box 22
Water Solenoids .. 22
Condenser Fan .. 22
Sub-condenser .. 22
8. Mechanical Disassembly

8-1) Refrigerator Disassembly

Control Panel

1. Insert a flat-blade screwdriver on the slot as shown, and unlock the tabs.
2. Disconnect the wire connector in the back of control panel.

Door Handle

The door handles allow access into the refrigerator and freezer. They are front mounted with Phillips head screws.
1. With a small flat-blade screwdriver, press the small button and pull handle cover out.
2. Remove the Phillips screws (8).
3. Lift the handle with an in and upward motion until it disengages the locking tabs. Pull the handle outward to remove it.

Beverage Station™

The beverage station™ allows access to the refrigerator without opening the refrigerator door.
1. Open the door beverage station™
2. With a small flat-blade screwdriver, take out the rubbercap, then put it into the small hole and push the button inside.
3. Take off its door.

Door Gasket

The door gasket is a molded gasket set into a channel located in the door liner.
1. Open the door.
2. Grasp the gasket and pull in an outward motion until the molded gasket separates from the door liner.
Mechanical Disassembly

Refrigerator Door Light Switch

The refrigerator has a door light switch located in the upper right corner for the refrigerator.

1. Use a small flat-blade screwdriver to unlock the locking tab and pull the switch out until the wire connector is visible.

Plastic Drawers in Refrigerator

Drawers are designed for storage of fruits, vegetables, and deli items. The drawers are located in the lower portion of the refrigerator.

1. Pull out the drawer as far as it goes.
2. Tilt the drawer up and pull it out until it is removed.

Refrigerator Light

The refrigerator lights are located in the upper and lower portion of refrigerator.

1. Pull out the screw cap and remove the screw.
2. To access the lower lights, pull out the screw cap and remove the screw.
3. Remove the lamp cover by unlocking the tabs and pulling the cover down.

Gallon Door Bin

The door bins allow storage of perishable items.

1. Push the bin up and slide it out.

Tempered Glass Shelf

These shelves allow the storage of larger items and pull out for easy access.

1. Pull the shelf out as far as it goes.
2. Lift it up and remove it.
Water Filter

The water filter is located in the upper right-hand corner of the refrigerator. The water filter filters water for the ice maker and the water dispenser.

1. Turn the water filter 1/2 turn counterclockwise and pull it down.
2. To install the filter, align the indication mark (unlock position) and push it up while turning 1/2 turn clockwise until the lock position is aligned. Do not over tighten.

Evaporator Cover in the Refrigerator

1. Pull out the screw cap and remove the screw.
2. Remove the lamp cover by unlocking the tabs and pulling the cover down.
3. Remove the water tank from the evaporator cover by unscrewing the screws (2).
4. Remove the screws (6) at the evaporator cover and the two fixed screws of the wire connector cover.
5. Take off motor and lamp wire connector located on the upper liner.
6. Remove the duckwork of the evaporator fan in the direction of the arrow as shown.

Upper Ductwork

1. Remove the screw caps (2) and screws (5).
2. Slide the upper fan ductwork out while disconnecting the wire connector (lamp and thermistor).

Evaporator Fan Motor

The evaporator fan is located in the middle rear of the freezer. This fan circulates cold air in the freezer.

1. Remove screws (4) located at the four corners of the fan bracket.
2. Take the fan motor assembly off.
Evaporator in Refrigerator

Evaporator is located in the bottom of refrigerator.
1. Take off the ductwork in refrigerator.
2. Disconnect the wire connector.(Heater and Thermistor)
3. Desolder the capillary tube and the suction line from the evaporator.
4. Remove the evaporator.
5. With a file, score the capillary tube just upstream of the soldered point. Break off the soldered section to help prevent solder from plugging the tube during soldering.
6. Place a new evaporator and braze the suction and capillary tube to evaporator using silver solder.
7. Install a replacement dryer.
8. Evacuate and recharge the system using reasonable procedures.

Refrigerator Thermistor

The refrigerator thermistor is located inside of the upper light cover of the refrigerator.

CoolSelect Zone™ Thermistor

The CoolSelect Zone™ thermistor is located outside the back of CoolSelect Zone™ drawer. The temperature signal goes to the micro-processor.
Door Bin in Freezer

The door bins allow storage of perishable items.
1. Push the bin up and slide it out.

Freezer Door Light Switch

This switch is located in the left-hand portion of the freezer and sends a signal to the processor.
1. With a small flat-blade screwdriver, unlock the locking tabs and pull the switch out until the wire connector is visible.
2. Disconnect the wire connector and remove the switch.

Freezer Shelf

The shelves slide out for easy access for frozen items.
1. Slide the shelf out until it reaches its stop.
2. Tilt down and slide it out of the compartment.

Plastic (Wire) Drawer in Freezer

Drawers are designed for storage of meat and dry foods. The drawers are located in the lower portion of the freezer.
1. Pull out the drawer as far as it goes.
2. Tilt the drawer up and pull it out until it is removed.

The ice dispenser is located in the upper portion of the freezer. This assembly stores ice made by the icemaker and dispenses ice.
1. Lift the ice bucket up ① and slide out the ice dispenser assembly ②.
Mechanical Disassembly

The ice maker is located inside of the ice dispenser assembly.
1. Remove ice maker support screws (2), and slide out.
2. Disconnect the ice maker wire connector.
3. Unlock the locking tabs to separate the ice maker kit.

In order to assemble the icemaker kit.
1. Assemble the geared motor shaft and the front of ice tray.
2. Lift the front locking tab and assemble the ice maker kit.
3. Connect the ice maker wire connector.
4. Match the tab holes and tabs(2) located on the top of the liner, and slide the ice maker in.
5. Tighten the screws (2) of the ice maker support.

Auger Motor Case

This shelf is designed to support the ice maker & ice dispensed and Xtra Space™.
1. Remove the Xtra Space™ cover to push it down near the partition.
2. Slide the partition out.
3. Remove the screws (2) on the bottom front of the case.
4. Slide out the case while disconnecting the wire connect.

In order to assemble the icemaker kit.
1. Assemble the geared motor shaft and the front of ice tray.
2. Lift the front locking tab and assemble the ice maker kit.
3. Connect the ice maker wire connector.
4. Match the tab holes and tabs(2) located on the top of the liner, and slide the ice maker in.
5. Tighten the screws (2) of the ice maker support.
Mechanical Disassembly

Freezer Light

The freezer light is located in the bottom of the auger motor case. The light is covered by an opaque cover.
1. Remove the screw and the light cover.

Upper Ductwork

1. Remove the screw cap and screw.
2. Slide the upper fan ductwork out while disconnecting the wire connector (Lamp and Thermistor).

Evaporator Cover in Freezer

1. Pull out the screw caps and remove screws (6).
2. Remove the ductwork of the evaporator fan in the direction of the arrow as shown.
3. Disconnect the wire connector.

Evaporator Fan Motor

The evaporator fan is located in the lower rear of refrigerator. This fan circulates cold air in the refrigerator.
1. Remove screw(4) located at the four corners of the fan bracket.
2. Take the fan motor assembly off.
Evaporator in Freezer

Evaporator is located in the bottom of freezer to produce cold air driven across the evaporator coils.
1. Take off the ductwork in Freezer.
2. Disconnect the wire connector (Heater, Bimetal, and Thermistor).
3. Desolder the inlet and outlet tubes.
4. Remove the evaporator.
5. Take the same steps to seal the system as mentioned earlier.

Freezer Thermistor

The freezer thermistor is located at the top left of freezer vent. It sends temperature signals to the micro-processor.

Ambient Thermistor

The ambient thermistor is located inside the upper hinge cover. It sends temperature signals to the micro-processor.

Ice-Maker Thermistor

The Ice-Maker thermistor is located in its bottom. The temperature signal sends the micro-processor.
Machine Compartment & Electric Box

1. Disconnect the power cord of the refrigerator.
2. Remove the fixed screws (6) of compressor cover.
3. Slide up and take off the compressor cover to see the machine compartment.
4. Press the tab in electric box cover to take out by using a flat-blade screw driver.

Condenser Fan

The condenser Fan is located in the middle of machine compartment. It cools down the sub-condenser and the compressor.
1. Disconnect the condenser fan wire.
2. Remove screw (1) on the drain water tray.
3. Take the condenser fan assembly off.

Sub-condenser

The sub-condenser is located in the machine compartment. The heat is extracted by condenser fan.
1. Desolder the compressor discharge & the sub-condenser outlet.
2. Take out the sub-condenser.

Water Solenoids

When the solenoids receive a signal from the microprocessor, they supply water to the water dispenser or the ice maker.
1. Remove bracket screw (1) on electric box.
2. Take the solenoids assembly out.
3. Disconnect water tubes (3).
9. Operation Function

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1</td>
<td>Digital Panel</td>
<td>24</td>
</tr>
<tr>
<td>9-2</td>
<td>Temperature Control Function</td>
<td>24</td>
</tr>
<tr>
<td>9-3</td>
<td>Power Freeze and Power Cool Functions</td>
<td>25</td>
</tr>
<tr>
<td>9-4</td>
<td>Child Lock Function</td>
<td>25</td>
</tr>
<tr>
<td>9-5</td>
<td>Ice & Water Dispenser Function</td>
<td>26</td>
</tr>
<tr>
<td>9-6</td>
<td>C-Fan Motor Delay Function of the Machine Compartment</td>
<td>26</td>
</tr>
<tr>
<td>9-7</td>
<td>CoolSelect Zone™ Function (RS2555, RS2577)</td>
<td>26</td>
</tr>
<tr>
<td>9-8</td>
<td>Water Filter Indicator Function</td>
<td>27</td>
</tr>
<tr>
<td>9-9</td>
<td>Ice-Maker Function</td>
<td>27</td>
</tr>
<tr>
<td>9-10</td>
<td>Defrost Function</td>
<td>29</td>
</tr>
<tr>
<td>9-11</td>
<td>Forced Operation Function (Pull-down/R-Defrost/R,F-Defrost/Cancellation)</td>
<td>30</td>
</tr>
<tr>
<td>9-12</td>
<td>Sound Function</td>
<td>31</td>
</tr>
<tr>
<td>9-13</td>
<td>Exhibition Function</td>
<td>31</td>
</tr>
<tr>
<td>9-14</td>
<td>Self-Diagnostics Function</td>
<td>31</td>
</tr>
<tr>
<td>9-15</td>
<td>Load Operation Check Function</td>
<td>33</td>
</tr>
<tr>
<td>9-16</td>
<td>Restoration Function for Power Outage</td>
<td>33</td>
</tr>
<tr>
<td>9-17</td>
<td>Set Point Shift Function</td>
<td>33</td>
</tr>
<tr>
<td>9-18</td>
<td>Table of Set Point Shift Function</td>
<td>34</td>
</tr>
</tbody>
</table>
9. Operation Function

9-1) Digital Panel

When the system power is initially engaged, the default set temperatures are -4 °F for the freezer and 38 °F for the set refrigerator, respectively. The numbers shown on the digital display panel stand for the actual compartments temperatures. When the compartment temperatures go down, so do the numbers on the display panel, and finally they reach the set temperatures. Once the system is stabilized, the display temperatures are the set temperature.

1) Freezer Temperature Control.
 To select a set temperature, press the Freezer Temp. button. The display shows the set temperature from -14 °F to 8 °F in sequence.

2) Refrigerator Temperature Control.
 To select a set temperature, press the Fridge Temp. button. The display shows the set temperature from 34 °F to 46 °F in sequence.

note) Because of the temperature sensor sensivity, the refrigerator can be under and/or over cooled when the air flow is blocked by stored foods. (Temperature range of the sensor : 15 °F ~ 80 °F)

In the event of a power failure, if the freezer temperature is maintained lower than 41 °F, the last selected set temperature and functions memorized in EEPROM will be restored when the power is on.

9-2) Temperature Control Function

When the system power is initially engaged, the default set temperature are -4 °F for the freezer and 38 °F for the set refrigerator, respectively. The numbers shown on the digital display panel stand for the actual compartments temperatures. When the compartment temperatures go down, so do the numbers on the display panel, and finally they reach the set temperatures. Once the system is stabilized, the display temperatures are the set temperature.

1) Freezer Temperature Control.
 To select a set temperature, press the Freezer Temp. button. The display shows the set temperature from -14 °F to 8 °F in sequence.

2) Refrigerator Temperature Control.
 To select a set temperature, press the Fridge Temp. button. The display shows the set temperature from 34 °F to 46 °F in sequence.

note) Because of the temperature sensor sensivity, the refrigerator can be under and/or over cooled when the air flow is blocked by stored foods. (Temperature range of the sensor : 15 °F ~ 80 °F)

In the event of a power failure, if the freezer temperature is maintained lower than 41 °F, the last selected set temperature and functions memorized in EEPROM will be restored when the power is on.
Operation Function

9-3) Power Freeze and Power Cool Functions

- Select the Power Freeze or Power Cool buttons separately.
- These buttons are toggled ON and OFF and the indicators as well.
- Although you select Power Freeze or Power Cool, the set temperatures in the freezer and refrigerator are not changed.
- The set temperatures for the compartments can be changed while these functions are in use.

1) **Power Freeze function**
 1-1) When you press the Power Freeze button, the LED indicator lights right away, but there is 10 seconds lag time to an actual operation. When this button is pressed again, the Power Freeze function stops and the indicator is off immediately.
 1-2) If you select Power Freeze, both the compressor and the freezer fan run for 10 hours continuously.

 note) When the Power Freeze is selected, it enables maximum ice maker output. The ice making interval is reduced from 90 mins to 55 mins (55 mins after the water delivery, if the ice temperature is maintained lower than 19°F, the ice tray will be twisted). When the ice bucket is full before 10 hours of operation, Power Freeze is automatically terminated.

1-3) During Power Freeze, the freezer retains the current settings.
1-4) When Power Freeze expires, the indicator goes off and the freezer set temperature will be restored.

2) **Power Cool function**
 2-1) Power Cool operation and the indicator work exactly same as the Power Freeze function.
 2-2) When Power Cool is selected, COMP and R-FAN operate continuously until the refrigerator reaches 25°F. This function will be terminated after 2 1/2 hr running.

3) **When you select Power Freeze and Power Cool together**
 Each function works at the same time. The COMP and F-FAN run continuously and the R-FAN runs until 25°F in the refrigerator.

4) **Initial Power-On**
 4-1) The freezer and the refrigerator temperatures are higher than 14°F and 50°F respectively if, respectively. If Power Freeze is selected, the R-FAN will be off. If Power Cool is selected, the F-FAN will be off.
 4-2) When both functions are selected, there is no benefit of fast cooling for each compartment.

9-4) Child Lock Function

- When the child lock button is pressed for 3 seconds, the child lock indicator is on with an audible tone.
 - When it is locked, no function commands except the Ice type button will be accepted.
 - This function will prevent accidental setting that may be caused by children or pets.
 - To unlock the setting functions, press this button for 3 seconds again.
9-5) Ice & Water Dispenser Function

- Among several ice-maker functions, the ice extraction function is performed by mechanical system. Only the relay control for a cubed-ice dispensing and the SSR control for the ice chute door are performed electronically.

1) Select Cubed/Crushed/Ice-off function
 1-1) The Ice Type button selects Cubed/Crushed/Ice-off options in sequence.
 1-2) A default setting is Cubed option.
 1-3) If Cubed ice is selected, the Crushed ice bypass solenoid and the geared motor will allow Cubed ice to by pass the ice Crusher.
 1-4) If Ice-off is selected, the ice maker will stop working. This option will be terminated when Cubed and Crushed options are selected.

Note) When the Ice-off indicator is on and the remained ice is in tray, only Cubed ice will be dispensed from the ice bucket.

1-5) The ice chute door must be open for 5 seconds after dispensing ceases. After this 5 seconds delay, SSR will be controlled to shut the ice chute door.

Note) Do not force to close the ice chute door. Try to dispense some more ice again to work it automatically.

2) Water Dispenser function
 2-1) To dispense water, depress the water dispenser lever located in the dispenser recess.
 2-2) When the lever is depressed, the water solenoid valve located in the machine compartment is open to flow water.
 2-3) There is no electronic control function for this option.

9-6) C-Fan Motor Delay Function of the Machine Compartment

- According to the ambient temperature, the condenser fan located in the machine compartment is operated with different modes.

<table>
<thead>
<tr>
<th>C-FAN Delay function</th>
<th>Ranges of ambient temp.</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Above 66°F</td>
<td>C-FAN is ON as soon as the compressor is on.</td>
</tr>
<tr>
<td></td>
<td>61°F ~ 65°F</td>
<td>C-FAN is ON with 5 minutes delay from the compressor on.</td>
</tr>
<tr>
<td></td>
<td>Below 60°F</td>
<td>C-FAN is OFF regardless of the compressor operation.</td>
</tr>
</tbody>
</table>

9-7) CoolSelect Zone™ Function (RS2555,RS2577)

- To select this function, open the refrigerator door and press the button on the control panel of CoolSelect Zone™ drawer.
- When the CoolSelect Zone™ function is selected, the damper inside fan ductwork is open. So the refrigerator cooling is performed first, then the damper is closed to control the CoolSelect Zone™ temperature.
Operation Function

1) Select function
 1-1) Using Select button, Cool, Chill(30°F), and Soft Freeze(23°F) options can be selected in sequence. Cool option maintains a set temperature of the refrigerator.

2) Quick Cool function
 2-1) If the Quick Cool is selected, LEDs will flash 60 and Min. The count will be decreased in every minute.
 2-2) To cancel this function, press Quick Cool button again or Thaw button or Select button. Otherwise, it will be terminated 60 minutes later automatically.
 2-3) After this function ends, this drawer will come back to Cool option.
 2-4) A defrost cycle will be postponed until Quick Cool option is finished.

3) Thaw function
 3-1) When the thaw button is pressed, LEDs will flash 4, 6, 10, and 12 in sequence and Hr.
 3-2) The count will be decreased in every hour.
 3-3) A cancellation of this function is same as Quick Cool function.
 3-4) After this function ends, this drawer will be maintained with 30°F.
 3-5) While the compressor is on, this drawer retains a certain temperature and while the compressor is off, the defrost heater is activated and R-FAN is on with a closed position of the damper.

9-8) Water Filter Indicator Function

1) Filter Indicator
 1-1) This indicator initially lights in green. The light color will be changed to orange after 5 month operation then to red at the 6th month. The EEPROM in the control board counts a period of time regardless of a power failure.
 1-2) To reset the counter and the light color, press Ice Type button and Child lock button for 3 seconds simultaneously.
 1-3) If these two buttons are pressed simultaneously for 5 seconds, this function will cease.
 1-4) To restore this function, press these buttons again for 3 seconds.

9-9) Ice-Maker Function

- The Ice-maker is referred to the device with an automatic ice production, storage in the ice bucket and dispensing through the ice chute.

1) Ice-maker parts
2) Preparation of Ice-maker
 2-1) Connect the water line to the water supply valve of refrigerator to supply water. (See how to connect a water supply line in the owner’s manual.)
 2-2) Push the bucket back fully so that the guide-ice of ice maker should not touch the back of bucket. (If the back of bucket touches the guide-ice of ice maker, the ice maker will not make ice any more because of a ice full signal.)
 2-3) It takes 6 hours to harvest a first ice, and throw away 2-3 times of these ice to make sure the supplied water clean.

1) Initial Operation function
 1-1) Whenever the power is on, the control board checks the ice tray leveling with the leveling switch within 2 seconds.
 1-2) If the leveling switch is not off position, the geared motor will turn to the initial position to make the ice tray leveled.
 1-3) When the ice tray is leveled, it will remain this position for 2 hours (1 cycle time for ice production).
 1-4) After 2 hours, the sensor located under the ice tray will measure the tray temperature. If the temperature is maintained lower than 19°F for 5 minutes, and the ice full switch is off position, the ice tray twisting process will begin.

<Reference table>

<table>
<thead>
<tr>
<th>Leveling S/W</th>
<th>Ice full S/W</th>
<th>Judgement</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON(“LOW”)</td>
<td>ON(“LOW”)</td>
<td>Not ready</td>
<td>· MICOM Port</td>
</tr>
<tr>
<td>ON(“LOW”)</td>
<td>OFF(“HIGH”)</td>
<td>Not ready</td>
<td>PIN #51: Leveling</td>
</tr>
<tr>
<td>OFF(“HIGH”)</td>
<td>ON(“LOW”)</td>
<td>Not ready (Ice bucket with full of ice)</td>
<td>PIN #51: Ice full</td>
</tr>
<tr>
<td>OFF(“HIGH”)</td>
<td>OFF(“HIGH”)</td>
<td>Ready</td>
<td>· Port level</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFF : 4.5V ↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ON : 0.5V ↓</td>
</tr>
</tbody>
</table>
2) Water Supply function
 2-1) When the ice tray is levelled again after ejecting ice, the water solenoid value will be controlled to supply water by
time check basis. (See the “Time to supply water” Table)

3) Ice production
 3-1) After 90 minutes pass from the water supply, the control board will check the temperature.
 3-2) If the sensor reads the temperature lower than 19 °F for more than 5 minutes, than the ice production process is
completed.

4) Test function
 ● In order to operate a test function, press the knob (Test Switch) for 1.5 second.
 ● This function can be used to check a proper working, to clean the ice tray, and to adjust the water level in the ice tray.
 4-1) This function only works when the ice tray is leveled and the ice full signal is cleared.
 4-2) When the water line is connected, each process such as a water supply, ejection, and leveling, can be investigated
by this button.

5) Ice off function
 5-1) When the Ice off option is selected by Ice Type button, the ice making process will cease.
 5-2) When the ice making process ceases, the final state will be the ice tray with supplied water.
 5-3) When Cubed or Crushed option is selected again, the control board will check an accumulated time period. After
making it 90 minutes and when the ice tray temperature is acceptable, ice ejection process will begin.

6) Functions when the freezer door is open
 ● When the freeze door is open, all ice maker related processes will cease in order to minimize noise and to prevent ice
from dispensing.
 6-1) The ice tray stops moving regardless of the position.
 6-2) The water supply process remains working as usual.
 6-3) If the ice tray is in the middle of ice ejecting process, close the freezer for 30 seconds and check if the tray is
leveled. If it is not leveled, it must be out of order.

9-10) Defrost Function

1) A defrost is determined based on the accumulated compressor on-time.
2) When the power is engaged for the first time, the defrost cycle for the freezer and the refrigerator will begin after 4
hours of the accumulated compressor on-time.
3) A defrost interval depends on the ambient temperature, the number of door openings, and the door open time.
4) A minimum interval is 6 hours and a maximum is 8 hours for the refrigerator, and 12 hours and 16 hours for the
freezer, respectively.
5) The defrost heater on-time is determined by the defrost sensors as follow :

<table>
<thead>
<tr>
<th></th>
<th>Refrigerator</th>
<th>Freezer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater ON</td>
<td>Below 50 °F</td>
<td>-</td>
</tr>
<tr>
<td>Heater OFF</td>
<td>63 °F</td>
<td>50 °F</td>
</tr>
</tbody>
</table>
Operation Function

9-11) Forced Operation Function (Pull-down / R-Defrost / R.F-Defrost / Cancellation)

- This function enables a pull-down mode, a defrost mode for the refrigerator only, a defrost mode for the freezer and the refrigerator at the same time, and a cancellation of this function.
- Press Power Freeze and Fridge Temp. buttons for 8 seconds simultaneously to get in the ready mode for a forced operation.
- The display panel will return to normal after 20 seconds in the ready mode.
- At the ready mode, press any button (except Ice Type and Child Lock) once to start a pull-down operation, twice for a defrost cycle for the refrigerator, three times for a defrost cycle for the freezer and the refrigerator, and finally four times for cancellation of this function.
- Another way to cancel this function is to simply plug out and in the power cord.

Press both button for 8 seconds at the same time.

1) Pull-down Operation
1-1) At the ready mode, press any button once then the buzzer will beep (ON for 1/2 second and OFF for 1/2 second) until this mode is cancelled.
1-2) At this pull-down mode, the compressor will start immediately (No 5 minute delay) and if the system is in the defrost cycle, it will be cancelled right away.

note) If this pull-down mode begins right after the compressor was off, the compressor may not start to run due to an overload condition.

1-3) At this mode, the compressor and freezer fan will operate continuously for 24 hours and the refrigerator fan will be on and off according to the set temperature (34°F).
1-4) After 24 hour operation, the system will be cycled at -14°F for the freezer and 34°F for the refrigerator.
1-5) In order to cancel this mode at any time, select the next mode on the ready mode or power off the system.

2) Defrost operation
2-1) At the pull-down mode, press any button again on the ready mode to begin the defrost cycle for the refrigerator.
2-2) The beep sound continues for 3 second at the beginning, then ON for 3/4 seconds and OFF for 1/4 second until this mode cease.
2-3) After this operation, the system will come back to normal operation.
2-4) At this mode, press any button again on the ready mode to operate the defrost cycles for both compartments.
2-5) The beep sound continues for 3 seconds at that time, then ON for 1/4 second and OFF for 3/4 seconds until the defrost operation cease.

3) Cancellation
3-1) At the R.F-Defrost mode, press any buttons again on the ready mode to return to a normal operation.
3-2) Simply unplug the power cord, then plug it again to return to a normal operation.
Operation Function

9-12) Sound Function

1) Sound function
 1-1) To make sure a command input, whenever a button is pressed, a “ding-dong” sounds.
 1-2) When two or more buttons are pressed simultaneously or if a wrong button is pressed, there is no sound.

2) Door Open Alarm
 2-1) When the doors remain open for 2 minutes, there are 10 times beeps.
 2-2) If the doors continue to remain open more than 2 minutes, the additional 10 beeps interval will change to 1 minute.
 2-3) The beeps will cease immediately when the doors are closed.

9-13) Exhibition Function

- This function is for a display purpose on the floor of show room or store.

1) Mode ON/OFF
 1-1) For the exhibition mode, press Power Freeze and Freezer Temp. buttons simultaneously for 8 seconds until a “ding-dong” sounds.
 1-2) Press the same time buttons again for 8 seconds to cancel this mode put with a “ding-dong” sound.

2) Operation
 2-1) Most of the system function except the compressor operation are working properly.
 2-2) There is no defrost cycle in this mode.

9-14) Self-Diagnostics Function

1) Self-Diagnostics in the initial Power ON
 1-1) The control board performs a self diagnostics test within 1 second and check out the temperature sensors abilities.
 1-2) If a sensor failure occurs, a corresponding LED segment will blink with a beep.
 1-3) When a LED segment blinks, only the cancellation function (Press Power Freeze and Power Cool buttons simultaneously for 8 seconds) is acceptable.
 1-4) After a replacement of bad sensor or a cancellation of this function, this self diagnostics will end.

2) Self-Diagnostics in the normal operation
 2-1) To select this function, press Power Freeze and Power Cool buttons simultaneously for 8 seconds with an audible tone.
 2-2) In the self diagnostic mode, only corresponding LED segments will be illuminated (see the check list on the next page)
 2-3) After a 30 second illumination of error signal, the system will return to the normal operation.
Operation Function

* Self-diagnostics check list

<table>
<thead>
<tr>
<th>NO</th>
<th>Error Item</th>
<th>LED Display</th>
<th>Details</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>I/M-sensor</td>
<td></td>
<td>I/M-sensor connector missing; contact failure, electric wire cut, short-circuit; I/M-sensor failure; and so on</td>
<td>Indicate Error when the temperature sensed by I/M-sensor is higher than 150°F or lower than -58°F.</td>
</tr>
<tr>
<td>02</td>
<td>R-sensor</td>
<td></td>
<td>R-sensor connector missing; contact failure, electric wire cut, short-circuit; R-sensor itself failure; and so on</td>
<td>Indicate Error when the temperature sensed by R-sensor is higher than 150°F or lower than -58°F.</td>
</tr>
<tr>
<td>03</td>
<td>REF defrost sensor</td>
<td></td>
<td>REF evaporator internal defrosting sensor connector missing; contact failure, electric wire cut, short-circuit; sensor itself failure; and so on</td>
<td>Indicate Error when the temperature sensed by R-defrosting sensor is higher than 150°F or lower than -58°F.</td>
</tr>
<tr>
<td>04</td>
<td>R-FAN ERROR</td>
<td></td>
<td>R-Fan motor operation failure; feedback signal line contact failed, electric wire cut, short-circuit; and so on</td>
<td>Indicate Error if the F and G signals generated by the FAN-motor operation are not input.</td>
</tr>
<tr>
<td>05</td>
<td>I/M function ERROR</td>
<td></td>
<td>Ice-ejector and level failed three times or more</td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>Cool Select Zone™ sensor</td>
<td></td>
<td>Cool Select Zone™ sensor connector missing; contact failed, electric wire cut, short-circuit; Cool Select Zone™ sensor itself failed; and so on</td>
<td>Indicate Error when the temperature sensed by Cool Select Zone™ sensor is higher than 150°F or lower than -58°F.</td>
</tr>
<tr>
<td>07</td>
<td>Ambient Air SENSOR</td>
<td></td>
<td>Air sensor connector missing; contact failure, electric wire cut, short-circuit; open air sensor itself failure; and so on</td>
<td>Indicate Error when the temperature sensed by the open air sensor is higher than 150°F or lower than -58°F.</td>
</tr>
<tr>
<td>08</td>
<td>F-SENSOR</td>
<td></td>
<td>F-SENSOR connector missing; contact failed, electric wire cut, short-circuit; F-Room sensor itself failure.</td>
<td>Indicate Error when the temperature sensed by F-sensor is higher than 150°F or lower than -58°F.</td>
</tr>
<tr>
<td>09</td>
<td>F-DEF ERROR</td>
<td></td>
<td>F-DEF ERROR connector missing; contact failed, electric wire cut, short-circuit; sensor itself failure; and so on</td>
<td>Indicate Error when the temperature sensed by F-defrosting sensor is higher than 150°F or lower than -58°F.</td>
</tr>
<tr>
<td>10</td>
<td>F-FAN ERROR</td>
<td></td>
<td>F-FAN ERROR motor operation failure; feedback signal line contact failure, motor’s electric wire missing; and so on</td>
<td>Indicate Error if the F and G signals generated by the FAN-motor operation are not input.</td>
</tr>
<tr>
<td>11</td>
<td>C-FAN ERROR (COMP-FAN)</td>
<td></td>
<td>C-FAN ERROR motor operation failure; feedback signal line contact failure, motor’s electric wire missing; and so on</td>
<td>Indicate Error if the F and G signals generated by the FAN-motor operation are not input.</td>
</tr>
</tbody>
</table>

* Error items of self-diagnostics

If any LEDs blink, the corresponding sensors and components must be checked for an error.
9-15) Load Operation Check Function

1) In the normal operation, press Power Freeze and Power Cool buttons simultaneously for 6 second, then the display panel will blink for 2 seconds.
2) Press Fridge Temp. button ③ to get into this check mode with an audible tone.
3) Each illuminating LED segment stands for the component which has an output signal from the control board.
4) This mode will terminate automatically after 30 seconds.

Table of Load Mode Check List

<table>
<thead>
<tr>
<th>NO</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>R-FAN High or AC motor operation</td>
</tr>
<tr>
<td>②</td>
<td>R-FAN Low</td>
</tr>
<tr>
<td>③</td>
<td>R-DEF heater</td>
</tr>
<tr>
<td>④</td>
<td>Start mode</td>
</tr>
<tr>
<td>⑤</td>
<td>Overload mode</td>
</tr>
<tr>
<td>⑥</td>
<td>Low-temperature mode</td>
</tr>
<tr>
<td>⑦</td>
<td>Exhibition mode</td>
</tr>
<tr>
<td>⑧</td>
<td>COMP</td>
</tr>
<tr>
<td>⑨</td>
<td>F-FAN High</td>
</tr>
<tr>
<td>⑩</td>
<td>F-FAN Low</td>
</tr>
<tr>
<td>⑪</td>
<td>F-DEF-Heater</td>
</tr>
<tr>
<td>⑫</td>
<td>C-FAN High</td>
</tr>
<tr>
<td>⑬</td>
<td>C-FAN Low</td>
</tr>
<tr>
<td>⑭</td>
<td>Dispenser-Heater</td>
</tr>
<tr>
<td>⑮</td>
<td>Damper</td>
</tr>
<tr>
<td>⑯</td>
<td>Normal condition</td>
</tr>
</tbody>
</table>

※ For the R-FAN, only one rpm is applied for the current models, so that ① and ② show R-FAN operation only.
※ The F-FAN and C-FAN are operated to High/Low rpm automatically according to the operational condition.
※ ④⑤ and ⑥ only explain the system operation status according to the ambient condition.

9-16) Restoration Function for Power Outage

1) When the freezer temperature is lower than 41°F, all functions on the display panel will be restored.
2) When the freezer temperature is higher than 41°F, all functions will be initialized.
 (-4°F for the freezer, 38°F for the refrigerator, and Cubed for the Ice Type)

9-17) Set Point Shift Function

- Press Freezer Temp. and Power Cool buttons simultaneously for 12 seconds to get into this mode.
- In this mode, only the display LEDs for temperature will be ON.
Operation Function

Press both buttons simultaneously for 12 seconds

1) Initially, all products set the code, “0” and press Power Cool or Fridge Temp. to increase or decrease # of Reference.

2) To increase or decrease # of Code, press the Power Freeze or Freezer Temp. so that it can be adjusted such as the temperatures of freezer, refrigerator, Ice maker, and CoolSelect Zone™, and the quantity of water supply.

3) After 20 seconds from adjustment, a new setting will be stored in EEPROM and return to the normal display.

9-18) Table of Set Point Shift Function

1) Shift the freezer temperature sensor

<table>
<thead>
<tr>
<th>Reference Value</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Temp. shift</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1.0°F</td>
</tr>
<tr>
<td>2</td>
<td>-2.0°F</td>
</tr>
<tr>
<td>3</td>
<td>-3.0°F</td>
</tr>
<tr>
<td>4</td>
<td>-4.0°F</td>
</tr>
<tr>
<td>5</td>
<td>-5.0°F</td>
</tr>
<tr>
<td>6</td>
<td>-6.0°F</td>
</tr>
<tr>
<td>7</td>
<td>-7.0°F</td>
</tr>
</tbody>
</table>
Example) If you are lowering the current temperature of the freezer by -6.0°F

2) Shift the refrigerator temperature sensor

<table>
<thead>
<tr>
<th>Reference Value</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Temp. shift</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1.0°F</td>
</tr>
<tr>
<td>2</td>
<td>-2.0°F</td>
</tr>
<tr>
<td>3</td>
<td>-3.0°F</td>
</tr>
<tr>
<td>4</td>
<td>-4.0°F</td>
</tr>
<tr>
<td>5</td>
<td>-5.0°F</td>
</tr>
<tr>
<td>6</td>
<td>-6.0°F</td>
</tr>
<tr>
<td>7</td>
<td>-7.0°F</td>
</tr>
<tr>
<td>8</td>
<td>1.0°F</td>
</tr>
<tr>
<td>9</td>
<td>2.0°F</td>
</tr>
<tr>
<td>10</td>
<td>3.0°F</td>
</tr>
<tr>
<td>11</td>
<td>4.0°F</td>
</tr>
<tr>
<td>12</td>
<td>5.0°F</td>
</tr>
<tr>
<td>13</td>
<td>6.0°F</td>
</tr>
<tr>
<td>14</td>
<td>7.0°F</td>
</tr>
<tr>
<td>15</td>
<td>8.0°F</td>
</tr>
</tbody>
</table>

Example) If you are raising the current temperature of the refrigerator by +3.0°F
Operation Function

- The following options is limited to a model with the Ice Maker.

3) Adjust the time to supply water for the ice maker

<table>
<thead>
<tr>
<th>Reference Value</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Time to supply water</td>
</tr>
<tr>
<td>0</td>
<td>5 sec</td>
</tr>
<tr>
<td>1</td>
<td>4 sec</td>
</tr>
<tr>
<td>2</td>
<td>3 sec</td>
</tr>
<tr>
<td>3</td>
<td>6 sec</td>
</tr>
<tr>
<td>4</td>
<td>7 sec</td>
</tr>
<tr>
<td>5</td>
<td>8 sec</td>
</tr>
<tr>
<td>6</td>
<td>9 sec</td>
</tr>
<tr>
<td>7</td>
<td>10 sec</td>
</tr>
<tr>
<td>8</td>
<td>12 sec</td>
</tr>
<tr>
<td>9</td>
<td>13 sec</td>
</tr>
<tr>
<td>10</td>
<td>15 sec</td>
</tr>
<tr>
<td>11</td>
<td>17 sec</td>
</tr>
<tr>
<td>12</td>
<td>19 sec</td>
</tr>
<tr>
<td>13</td>
<td>21 sec</td>
</tr>
<tr>
<td>14</td>
<td>23 sec</td>
</tr>
<tr>
<td>15</td>
<td>25 sec</td>
</tr>
</tbody>
</table>

5) Shift the CoolSelect Zone™ temperature sensor

<table>
<thead>
<tr>
<th>Reference Value</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>CoolSelect Zone™ temperature sensor</td>
</tr>
<tr>
<td>0</td>
<td>0°F</td>
</tr>
<tr>
<td>1</td>
<td>-1.0°F</td>
</tr>
<tr>
<td>2</td>
<td>-2.0°F</td>
</tr>
<tr>
<td>3</td>
<td>-3.0°F</td>
</tr>
<tr>
<td>4</td>
<td>1.0°F</td>
</tr>
<tr>
<td>5</td>
<td>2.0°F</td>
</tr>
<tr>
<td>6</td>
<td>3.0°F</td>
</tr>
<tr>
<td>7</td>
<td>4.0°F</td>
</tr>
</tbody>
</table>

4) Shift the Ice maker temperature sensor

<table>
<thead>
<tr>
<th>Reference Value</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Ice maker temperature sensor</td>
</tr>
<tr>
<td>0</td>
<td>19°F</td>
</tr>
<tr>
<td>1</td>
<td>21°F</td>
</tr>
<tr>
<td>2</td>
<td>17.5°F</td>
</tr>
<tr>
<td>3</td>
<td>16°F</td>
</tr>
<tr>
<td>4</td>
<td>14°F</td>
</tr>
<tr>
<td>5</td>
<td>12°F</td>
</tr>
<tr>
<td>6</td>
<td>10.5°F</td>
</tr>
<tr>
<td>7</td>
<td>8.5°F</td>
</tr>
</tbody>
</table>
11. Diagnostics

11-1) If power is not ON

Caution!

At the power of main PCB, the 115V power and a high-voltage over DC 170V occur. Please take care of yourself on repair and measurement.

To check the main PCB, please apply descriptions of operation and references in the manual.

Start

Is 115V AC fuse down?

YES

Is power 115V both terminals of CN10?

NO

Check the exchange of fuse and disconnection cause.

YES

Is fuse on main PCB down?

NO

Check the assembly and connection of electric wires.

YES

Exchange fuse 115V 2A?

NO

Check the PCB pattern and replace BD1.

NO

Top S/W 233V

Is the voltage impressed DC 5.8V between C and S ?

NO

Replace PCB assembly.

NO

Is 12V impressed to both terminals of C102?

NO

1) Replace D104 (DSS5M).
2) Replace PCB assembly.

NO

Is the load such as relay normal?

NO

Replace REG1(KA7805)

NO

Is normal the load, such as relay?

NO

1) Check the assembly of electric wires and troubleshoot.
2) Replace the panel PCB.

NO

Is there any PCB soldering, short or broken?

Normal

- Check the connections of main PCB.
- Check the connections between upper hinge and CABI-door.
- Check the connections between door and panel PCB.
11-2) If the compressor and cooling fan motor don’t work normally

Diagnostics

Start

Did 5 min pass after COMP. OFF?

YES

Check after a lapse of 5 min.

NO

Did buzzer sound on forced operation?

YES

Does compressor work with forced operation?

NO

Apply Ref. 4

YES

Is buzzer sound on forced operation?

No (Check certainly after forced start.)

Exchange MICOM and PCB.

YES

Is MICOM No. 18 High? (5V)

NO

Apply Ref. 4

YES

Is freezer sensor normal?

NO

Open and repair the connection.

YES

Is the temp. sense of main PCB Normal?

NO

Troubleshoot the sensor and Exchange PCB.

YES

Open and troubleshoot the connection.

Is MICOM No. 18 High? (5V)

Open and repair the connection.

NO

Apply Ref. 2

YES

Is COMP relay normal?

NO

Exchange or troubleshoot COMP relay.

YES

Is the contact of connector CN70 normal?

NO

Insert connector completely?

YES

Is COMP assembly normal?

NO

Exchange and repair COMP assembly.

YES

Normal
11-3) If defrost function

Start

Is F, R defrosting sensor by self-diagnosis normal?

YES

Exchange and troubleshoot the corresponding sensor.

NO

Is F, R Room defrosting heater normal?

YES

Is temp. of the defrosting sensor below 23 ℉?

YES

Run forced operation for a specified period.

NO

Check temp. fuse, breaking of heater wire, contact of wire, and so on.

Make decision on the basis of ref. 4 and 6 in the manual.

See Ref. 3: ‘Check load’ in the manual.

Recheck the corresponding sensor for an error if it fails in return.

See test function in the manual.

Perform forced defrosting for F and R room at a time.

Is power applied to the respective defrosting heaters?

YES

Does the system return to cooling operation after heating for a specified period of time?

YES

Normal

NO

Recheck the connection terminal in Main PCB

NO

Repair the connection terminal.

YES

Check temp. fuse, breaking of heater wire, contact of wire, and so on.

Exchange or troubleshoot the failure relay or exchange PCB ass'y.

Reference

If temp. of F, R defrosting sensor by the working of heater are over 50 ℉, 63 ℉

See ‘Load Drive Circuit section’ and Ref. 2: How to check failure of relay.
11-4) If there is a trouble with self-diagnosis

- Error of sensor can be seen on the front display of refrigerator. If power is impressed to refrigerator first, an failure of sensor is found. The refrigerator will stop working and display (blink) the region of trouble-occurred sensor repetitively.
- Even if sensor has failure during the operation, the refrigerator will not stop working but can run the normal cooling operation because of being operated in the Emergency Operation mode. Therefore you’re requested to use how to check self-diagnosis (at page 31) in the manual.

1) If the ambient sensor has trouble

1. Start

 - Was the Main – PCB connector (CN31) inserted correctly?
 - NO
 - YES

 - Is the ambient temperature sensor normal?
 - NO
 - YES

 - Is the input of voltage to MICOM pin No. 63 normal?
 - NO
 - YES

 A bad contact or connector missing?

 - NO
 - YES

 - Exchange the temperature sensor.
 - Check the iced solder and short of main-PCB.

 No trouble with PCB and temperature sensor. Recheck the contact failure of connector.

2) If the temperature sensor of F and R room has trouble

 - See Ref. 4 (descriptions of circuit operation, and how to check temperature sensor in the manual.)

 - For sensor resistance per temperature, make use of the resistance values from Ref. 4 and 5.

 - Is the unit of Fridge’s temperature sensor normal?
 - NO
 - YES

 - Was the Main – PCB connector (CN30) inserted correctly?
 - NO
 - YES

 - Is the sequence of insertion of connector (CN30) wire identical to the circuit diagram?
 - NO
 - YES

 - Is the input voltage to MICOM pin No. 59 normal?
 - NO
 - YES

 - Troubleshoot a bad contact or missing of connector.
 - Modify the wrong configuration of connector wire - in case of being not inserted or incorrectly inserted - to be coincided with the circuit diagram.
 - Check if the iced solder of main PCB is short.

 No trouble with PCB and temperature sensor. Recheck the connector for an error of contact.
11-5) If alarm sound

1) If “Ding-Dong” sounds continuously

Start

- Isn’t the door opened minutely?
 - Yes
 - No

- Isn’t water penetrated into the door S/W?
 - Yes
 - NO

- Is the input voltage of main No. 43 and 44 changed at door-open, door-close?
 - Yes
 - NO

- Is the state of inserted connector (CN30) being normal?
 - Yes
 - NO

- Is the door S/W self-unit normal?
 - Yes
 - NO

- Separate the door S/W and check if the measured value of unit is changed from 0 to ∞ according to S/W ON/OFF.

- Freezer door MICOM No. 43, Fridge door MICOM No. 44
 - Regular voltage are 5V to Open : 0V to Close.

- Troubleshoot the breaking of wire and bad door S/W.

- Connector not inserted. Troubleshoot poor contact.

- Exchange the door S/W.

- Main PCB and door S/W are normal.

2) If “Beep” sounds continuously

Start

- Didn’t you select forced operation and forced defrosting?
 - Yes
 - NO

- Do buzzer still sound after power-on again?
 - Yes
 - NO

- Release the forced operation and forced defrosting functions, or turn ON again after power OFF.

- Check if there is any short parts due to foreign matters and the test jumper part in the main-PCB.

- Main-PCB is normal
3) Without sound of buzzer operation

```
Start

Does it sound 'Ding-Dong' if you press a button on front panel?

YES

Does it make a sound of 'door-open' alarm when you are opening the door of freezer or fridge more than 2 min?

YES

Check the panel PCB with the reference of 'how to check panel display'.

NO

Is the bent or go-out of the buzzer in the main PCB?

YES

Buzzer is broken – replace it.

NO

Are signals coming out of MICOM No. 21 in a 1-sec cycle after the Forced operation?

YES

Replace the main PCB. (failure of MICOM)

NO

Check the state of pattern connection between MICOM No.21 and Q801. (Check Open/Short)

NO

Did lead of a component fall on the vibration plate of buzzer?

YES

Poor buzzer is broken down or replace the buzzer.

NO

The main PCB and buzzer are normal

YES

Main PCB is normal; buzzer normal.

NO

Refer the description of Test function in the manual for the Forced operation.
```
11-6) If the panel PCB is not working normally:

1) Where lighting of the panel PCB is disabled, or only some lamps are disabled.

- The basic check way: If you are troubleshooting in the basic check method, then

 - Is the connector of upper hinge cover inserted normally?
 - Yes: Reinsert the connector. Troubleshoot a poor contact.
 - No: Reinsert the connector. Troubleshoot a poor contact.

 - Is the main PCB connector (CN50) inserted normally?
 - Yes: Reinsert the connector in the main PCB.
 - No: Reinsert the connector. Troubleshoot a poor contact.

 - Is the connector of door panel PCB connector inserted normally?
 - Yes: Reinsert the connector. Troubleshoot a poor contact.
 - No: Panel PCB itself has trouble.

 - Is lighting operated normally when the exchange of panel PCB?
 - Yes: 1. Replace the main PCB.
 2. Check the short wires of CoolSelect Zone™ panel.
 - No: 1. Check the door wire of freezer – the disconnection of wire, short between wires.
 2. Check the CABI wire of freezer – the disconnection of wire, short between wires.
 3. Check the panel lighting circuit section within the main PCB for short open.

2) Where the Panel PCB key isn’t selected:
- The basic check way: If you are troubleshooting in the basic check method, then

 - Is the locking lamp lit on?
 - Yes: Reassemble the PCB assembly/Enforce the cancellation of pressed keys.
 - No: Recheck after the release of locking function.

 - Aren’t a key or more buttons pressed continuously?
 - Yes: Operated by separation.
 - Is lighting operated normally in the exchange of panel PCB?
 - Yes: Reassemble the PCB assembly/Enforce the cancellation of pressed keys.
 - No: Panel PCB has trouble for itself.
 - No: Reassemble the PCB assembly/Enforce the cancellation of pressed keys.

 - Isn’t the PCB system still operated by separating of the mechanism?
 - Yes: 1. Replace the main PCB.
 2. Check the short wires of CoolSelect Zone™ panel.
 - No: Panel PCB has trouble for itself.

- Refer to the description of circuit operation in the manual (10-6) Key scan and display Circuit selection’s, and measure the wave pattern.(page 40)

- See Ref. 1: “View of the connection cabinet-door for the wire assembly” in the manual.
11-7) If fan doesn’t work:

- The refrigerator has been applied with the BLDC fan motor. For RS2533, R room Fan is AC motor used. The BLDC motor is driven by DC 8-12V.
- Under the normal condition of COMP ON, it is operated together with F-FAN motor. With operation of the CoolSelect Zone™ function, the F-Fan motor may do not work. If the door is opened and closed once at a high ambient temperature, the BLDC motor would be operated after a 1-minute or longer delay. Therefore, you’re advised not to take it for an error.
- When the refrigerator is open, the freezer fan motor will also stop working simultaneously with the fan motor. (for the purpose of performance improvement).

Reference:
- Is the voltage DC 10V between GND of the main-PCB and pin No. 4 of CN72 around DC 5-10V?
 - YES: Fan works normally.
 - NO: Troubleshoot the connections of door S/W.

Flowchart:

Start

COMP OFF?

YES

Execute Forced operation. (See page 34 in the manual)

NO

Fan works normally.

Measure with the door closed.
- door open: DC 5V
- door close : 0V

Apply power around 5 minutes after the power OFF. (Prevent overload of compressor.)

In the first power application, the freezer/fridge/compressor fans work for 5 minutes regardless of the condition.

Exchange or troubleshoot the main PCB.

References:
CN72 No. 3(F), 2(R), 1(C) will be generated pulse signals when the motor rotates. These signals will be inputted into MICOM. Unless signals are not inputted in the restart of motor, it will be ON 10 seconds after the fan OFF. But if signals are not still entered, the above operation will restart four times more. Without signals entered continuously, the motor will get restarted after 10 minutes. This function is effective where the normal operation of motor would be restrained due to foreign matters such as ice.
11-8) If CoolSelect Zone™ isn’t operated normally (RS2555, RS2577)

1) If the lamp of CoolSelect Zone™ is not lit.
 - The basic method is applied to check – if you fail in troubleshooting after the execution, then

 Start

 Is the connector of CoolSelect Zone™ inserted correctly in the refrigerator?

 YES
 NO

 Is the connector of main PCB (CN51) inserted correctly?

 YES
 NO

 Is the connector of CoolSelect Zone™ panel PCB inserted?

 YES
 NO

 Is the connector of main PCB inserted correctly?

 YES
 NO

 Is the connector of CoolSelect Zone™ inserted correctly in the refrigerator?

 YES
 NO

 Reinsert the connector; troubleshoot a bad contact.

 If the Panel key isn’t selected:

 – The basic method is applied to check – if you fail in troubleshooting after the above execution, then

 1. Check the wires of CoolSelect Zone™ – check the disconnection of wire, short between wires.
 2. Check the Lighting Circuit of CoolSelect Zone™ panel in the main PCB for Short/Open.
 3. Check the main PCB of CoolSelect Zone™ assembly for Short; the wire assembly state between the panel and main PCB.

 2) If the Panel PCB key isn’t selected:
 - The basic method is applied to check – if you fail in troubleshooting after the above execution, then

 Aren’t a key or more pressed continuously?

 YES
 NO

 Isn’t the PCB system still operated by separation?

 YES
 NO

 Is lighting operated normally in the exchange of CoolSelect Zone™ panel PCB?

 YES
 NO

 Panel PCB has trouble for itself.

 Refer to 8-7) CoolSelect Zone™, Panel Circuit and measure the wave form.

 – The basic method is applied to check – if you fail in troubleshooting after the above execution, then

 1. Check the wires of CoolSelect Zone™ – check the disconnection of wire, short between wires.
 2. Check Short/Open the Lighting Circuit section of CoolSelect Zone™ panel in the main PCB.
 3. Check the short of main PCB in CoolSelect Zone™. Check the wire assembly.
11-9) If the lamps of freezer / refrigerator does not light.

Caution!

1. When you are exchanging the lamp of freezer, please exchange or troubleshoot it with the power OFF to avoid an electric shock.
2. Please keep in mind you do not get burnt by the excessive heating of an incandescent light bulb.

Start

- Is the inside lamp filament cut?
 - YES
 - Exchange or troubleshoot the inside lamp.
 - NO
 - Does the F-door S/W have a normal contact?
 - YES
 - Check the connections of F and R-door S/W; check and troubleshoot the inside lamp socket.
 - NO
 - Exchange or troubleshoot the door S/W

How to check:

Separate the door S/W and measure its resistance with a measure. As the result, every Open/Close of the door S/W should turn 0/∞, respectively.

1) Where 0 alone comes out : Door S/W has Short trouble.
2) Where ∞ alone comes out : Door S/W has Open trouble.

Reference

If the door is opened, then the contact of door S/W is opened and MICOM gets applied 5V to finally sense Open. If 5V has been sensed over two minutes afterwards, then an Door-Open alarm will sound ‘Ding-Dong’ for 10 seconds in a one-minute cycle. For that reason, if the door S/W has failure, the refrigerator can make a “Ding-Dong” sound per a one-minute cycle. Please note step for its service!
11-10) If the solenoid in the ice-chute cover doesn’t work:

Preliminary check

1) Check if the solenoid is unconditionally operated for 0.3 sec, independent of the Open/Close condition of cover ice-route, after a lapse of about 5 seconds from power ON. (Before installation, the cancellation of cover ice-route open is enabled.)

2) Check if the connector in upper hinge section is hook-up correctly.

Flowchart

Start

- **YES**
 - Is the S/N solenoid for 0.3 sec operated after 5 seconds from power ON?
 - **NO**
 - Press Ice lever and keep it open.
 - **YES**
 - The S/N control PCB assembly and wire system have no trouble.
 - **NO**
 - Is the cover closed of S/N after about 7~10 seconds?
 - **YES**
 - All the control system of cover ice-route has no trouble.
 - **NO**
 - Exchange the main PCB assembly.
 - **YES**
 - MICOM control port is normal.

- **YES**
 - Is MICOM No. 27 on PCB maintaining High for 0.3 sec at the first power ON?
 - **NO**
 - After replace TR Q701 and check SSR71 then exchange the failed components or replace the PCB assembly.
 - **YES**
 - Does C-E (between C and E) of TR Q701 turn ON for 0.3 sec?
 - **NO**
 - TR701 and SSR71 are normal
 - **YES**
 - Check the stop lever and support time-delay.

- **NO**
 - With the ice S/W ON and ICE S/W on, ice-movement motor in F room?
 - **YES**
 - Subject to the ice S/W ON, do CN31 No. 2 and MICOM No. 45 get impressed 0V?
 - **NO**
 - Check the ICE S/W, and troubleshoot the wire connection system.
 - **YES**
 - - Main PCB and the sensing section of ice-S/W are normal.
 - - Check the operation of SSR71 and Q701.

Diagnostics

11-11) If Crushed Ice/Cubed Ice doesn’t work properly:

Start

Is ice ejected?

NO

YES

Does ice in the ice tray exist ?

NO

YES

1) Check the ice-ejector S/W.
2) Check the door S/W.
3) Check the ice moving motor.
4) Check the cut of wire in the ice moving Motor section.

Do you see Ice Stop on the digital panel?

NO

YES

Cancel Ice Stop, select the Cubed/Crushed ice.

1) Check the water hose for folding or fastening.
2) Check the ice-water-way and solenoid value
3) Check the wires of ice-maker.

What’s your selection between crushed and cubed?

Crushed ice

Cubed ice

Does ice ejected sufficiently?

NO

Crushed ice extracted

YES

Normal operation

NO

Does MICOM No. 25 turn 5V if pressing Ice S/W?

NO

YES

Failure of Main PCB – Exchange it.

Does IC3 No. 18 turn 0V if pressing Ice S/W?

NO

YES

Failure of Main PCB (IC3) – exchange it.

Measure both contact terminals of RY77 relay after the separation of CN70, CN71 connectors.

Does the contact shelf of RY77 relay turn 0Ω even in the power OFF?

NO

YES

Main PCB (RY77 relay) is normal.

- - - Necessary to check other sections.

1) Check the wire between terminals of the AUGER motor and main PCB.
2) Failure of cube solenoid itself, or bad contact of the connector.

Failure of Main PCB – exchange.

(NO)

Failure of Main PCB (IC3) and exchange it.

(NO)

Measure both terminals of RY77 contact after the separation of CN70, CN71 connectors.

Exchange of Main PCB (RY77 relay).

Main PCB is normal.

- - - Check other sections.

1) Check the wire between the AUGER motor and main PCB.

Failure of Main PCB – exchange.

(NO)

-main PCB is normal.

- - - Check other sections.

1) Check the wire between terminals of the AUGER motor and main PCB.
2) Failure of cube solenoid itself, or bad contact of the connector.
13. Safety Instructions on Service

- Unplug the refrigerator before making any repair or any replacement.
 ➢ Avoid the electric shock.

- Use the rated components on the replacement.
 ➢ Check the correct model number, rated voltage, rated current, operating temperature and so on.

- On repair, be sure that the wires such as harness are bundled tightly and are not exposed by water.
 ➢ Bundle wires tightly in order not to be detached by the external force.

- On repair, remove completely dust, particles or other things on housing parts, harness parts, and connectors.
 ➢ Cleaning may prevent fire by tracking or short.

- Check if there is any trace indicating the infiltration of water on electrical parts.
 ➢ If there is, kind of trace, change the related components or do the necessary action such as taping using the insulating tape.

- After repair, check the assembled state of parts.
 ➢ It must be the same assembled state when compared with the state before disassembly.

- Check the surrounding conditions of the installed refrigerator.
 ➢ When the refrigerator is located at humid or wet place, or the installed state is unstable, change the location.

- If needed, do the ground.
 ➢ Especially, if there is a possibility of the electric leakage, this appliance must be properly grounded.

- Do not allow consumers to use one outlet for several plugs.

- Check whether the power cord is placed under other appliance and so, damaged, worn-out, and squeezed.
 ➢ Repair the defective power plug or outlet immediately.
 ➢ Make sure that the power cord is not placed under other appliance or squeezed.

- Do not allow consumers to keep bottles or the likes in the freezer or to keep foods in unstable position.

- Do not allow consumers to repair the appliance by themselves.

- Do not allow consumers to keep other chemicals except food.
 ➢ Medicines and other materials for research; This appliance will not maintain the precisely constant temperature for them.
 ➢ Volatile material (Alcohol, Benzene, Ether, LP gas etc.): possibility of explosion
Appendix I (Reference for circuit diagnostics)

Ref. 1) Wire connector on the cabinet door.

Ref. 2) How to check relay failure

Disconnect the connector of the main PCB CN70 and CN71, then check the follows:

1. Measure the voltage at both terminals of a coil and determine if the relay is working.
2. Measure the voltage at both terminals of a trigger and determine if SSR is working.
3. Measure the resistance at both terminals of a load contact, and determine if there is an error in voltages of coil and trigger.

### Div. of contact	Voltage at both terminal of coil and trigger	Both terminals of contact	Resistance value
3-contact terminal Relay	DC 12V (Working Condition)	Between C and NO	0 Ω (Short) -> Normal
Between C and NC	0 Ω (Open) -> Normal		
DC 0V (Stop Condition)	Between C and NO	0 Ω (Open) -> Normal	
Between C and NC	0 Ω (Short) -> Normal		
2-contact terminal Relay	~ DC 12V (load working condition)	Between both terminals of contact	0 Ω (Short) -> Normal
~ DC 0V (load stop condition)	Between both terminals of contact	0 Ω (Open) -> Normal	
SSR	~ DC 12V (load working condition)	Between both terminals of contact	About 4-5 kΩ (Short) -> Normal
~ DC 0V (load stop condition)	Between both terminals of contact	0 Ω (Open) -> Normal	
Unplug the power cord and disconnect the main PCB CN70 and CN71, the measure the follows:

1. As shown in table below, measure the resistance between terminals, check load trouble and wire connection error.
2. The diagram of circuit was drawn based on the maximum load. When a repair is needed, see the electric wiring diagram on the back of refrigerator to troubleshoot the corresponding model.
3. For safety, you must turn the power off.

Load Measurements and Termina l Values

<table>
<thead>
<tr>
<th>Load</th>
<th>Measurement Terminal</th>
<th>Value</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freezer Def heater</td>
<td>between CN70 13 and CN70 7</td>
<td>0 Ω</td>
<td>Temperature fuse, heater, wires short trouble</td>
</tr>
<tr>
<td>Ref. Def heater</td>
<td>between CN70 9 and CN70 7</td>
<td>0 Ω</td>
<td>Temperature fuse, heater, wires short trouble</td>
</tr>
<tr>
<td>1) Beverage Station heater</td>
<td>between CN70 11 and CN70 1</td>
<td>0 Ω</td>
<td>Heater, wires short trouble</td>
</tr>
<tr>
<td>2) Dispenser heater</td>
<td>between CN70 11 and CN70 1</td>
<td>∞ Ω</td>
<td>Heater, wires, and connector disconnection</td>
</tr>
<tr>
<td>3) Water tank heater</td>
<td>between CN70 11 and CN70 1</td>
<td>0 Ω</td>
<td>Heater, wires short trouble</td>
</tr>
<tr>
<td>Cover Over Solenoid</td>
<td>between CN71 7 and CN71 11</td>
<td>0 Ω</td>
<td>Coil, wires short trouble</td>
</tr>
<tr>
<td>Ice Solenoid Valve</td>
<td>between CN71 5 and CN71 11</td>
<td>0 Ω</td>
<td>Coil, wires short trouble</td>
</tr>
<tr>
<td>Auger Motor</td>
<td>between CN71 3 and CN71 11</td>
<td>0 Ω</td>
<td>Coil, wires short trouble</td>
</tr>
<tr>
<td>Cube Solenoid Valve</td>
<td>between CN71 1 and CN71 11</td>
<td>0 Ω</td>
<td>Coil, wires short trouble</td>
</tr>
</tbody>
</table>
Check the condition in power on. Door S/W have 2 contact points. One contact point perceives the door open/close by DC 5V on the PCB. Another contact point turns on/off the Lamp.

(Lamp on the REF)
1. If the Lamp turns on correctly when the door is open, it is normal. Press the door s/w and check it the lamp turns off. If it doesn't work properly, check the door s/w on the refrigerator.

(Door open on the REF and the sensor part of the Main PCB)
1. Check the voltage between no. 5 “+” terminal and no. 6 “-” terminal of CN30.
2. If 5V is checked when the door is open, it is normal.
3. If 0V is checked when the door is closed, it is normal. If it is not, check the door s/w and electric wire connection.

(Lamp on the FRE)
1. If the Lamp turns on correctly when the door is open, it is normal. Press the door s/w and check it the lamp turns off. If it doesn't work properly, check the door s/w on the FRE.

(Door open on the FRE and the sensor part of the Main PCB)
1. Check the voltage between no. 1 “+” terminal and no. 2 “-” terminal of CN30.
2. If 5V is checked when the door is open, it is normal.
3. If 0V is checked when the door is closed, it is normal. If it is not, check the door s/w and electric wire connection.

Disconnect the connector from the Main PCB, than measure the resistance of the following sensors.

1. Check the resistance the Freezer sensor cn30 between the no. 2 and 3.
2. Check the resistance the Fridge Room sensor cn30 between the no. 6 and 7.
3. Check the resistance the F Defrosting sensor cn30 between the no. 2 and 4.
4. Check the resistance the R Defrosting sensor cn30 between the no. 6 and 8.
5. Check the resistance between the no. ① and ④ the ambient Air sensor cn31.
6. Check the resistance between the no. ③ and ④ of the Ice-Maker sensor cn90.
7. Check the resistance between the no. ⑧ and ⑩ of the CoolSelect Zone™ sensor cn51.
8. Decide the sensor by comparing above resistances to the temperature of each sensor with the conversion table of sensor resistance and voltage from the reference temperature of Ref. 6 on this manual.

※ When the resistance is ∞Ω or 0Ω, check the connection of electric wire and sensor connector.

Appendix I (Reference for circuit diagnostics)

Ref. 4) Check sensors

Ref. 5) Check Door S/W
Appendix I (Reference for circuit diagnostics)

Ref. 6) Table of temperature sensor according to resistance and voltage conversion.

The input voltage to the MICOM PORT could be different by a hardware. This is a table based on the voltage using the 10kohm-F.

MICOM PORT voltage when the sensor is open: about DC 5V (Vcc LEVEL)
MICOM PORT voltage when the sensor is shorted: about DC 0V (Ground LEVEL)

<table>
<thead>
<tr>
<th>Temp. (°F)</th>
<th>Resistance (Ω)</th>
<th>Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-43.6</td>
<td>98.870</td>
<td>4.541</td>
</tr>
<tr>
<td>-41.8</td>
<td>93.700</td>
<td>4.518</td>
</tr>
<tr>
<td>-40.0</td>
<td>88.850</td>
<td>4.494</td>
</tr>
<tr>
<td>-38.2</td>
<td>84.150</td>
<td>4.469</td>
</tr>
<tr>
<td>-36.4</td>
<td>79.800</td>
<td>4.443</td>
</tr>
<tr>
<td>-34.6</td>
<td>75.670</td>
<td>4.416</td>
</tr>
<tr>
<td>-32.8</td>
<td>71.800</td>
<td>4.389</td>
</tr>
<tr>
<td>-31</td>
<td>68.150</td>
<td>4.360</td>
</tr>
<tr>
<td>-29.2</td>
<td>64.710</td>
<td>4.331</td>
</tr>
<tr>
<td>-27.4</td>
<td>61.480</td>
<td>4.301</td>
</tr>
<tr>
<td>-25.6</td>
<td>58.430</td>
<td>4.269</td>
</tr>
<tr>
<td>-23.8</td>
<td>55.550</td>
<td>4.237</td>
</tr>
<tr>
<td>-22.0</td>
<td>52.840</td>
<td>4.204</td>
</tr>
<tr>
<td>-20.2</td>
<td>50.230</td>
<td>4.170</td>
</tr>
<tr>
<td>-18.4</td>
<td>47.770</td>
<td>4.134</td>
</tr>
<tr>
<td>16.6</td>
<td>45.450</td>
<td>4.098</td>
</tr>
<tr>
<td>14.8</td>
<td>43.260</td>
<td>4.061</td>
</tr>
<tr>
<td>-13.0</td>
<td>41.190</td>
<td>4.023</td>
</tr>
<tr>
<td>-11.2</td>
<td>39.240</td>
<td>3.985</td>
</tr>
<tr>
<td>-9.4</td>
<td>37.390</td>
<td>3.945</td>
</tr>
<tr>
<td>-7.6</td>
<td>35.650</td>
<td>3.905</td>
</tr>
<tr>
<td>-5.8</td>
<td>33.990</td>
<td>3.863</td>
</tr>
<tr>
<td>-4.0</td>
<td>32.430</td>
<td>3.822</td>
</tr>
<tr>
<td>-2.2</td>
<td>30.920</td>
<td>3.778</td>
</tr>
<tr>
<td>-0.4</td>
<td>29.500</td>
<td>3.734</td>
</tr>
<tr>
<td>1.4</td>
<td>28.140</td>
<td>3.689</td>
</tr>
<tr>
<td>3.2</td>
<td>26.870</td>
<td>3.644</td>
</tr>
<tr>
<td>5.0</td>
<td>25.650</td>
<td>3.597</td>
</tr>
<tr>
<td>6.8</td>
<td>24.510</td>
<td>3.551</td>
</tr>
<tr>
<td>8.6</td>
<td>23.420</td>
<td>3.504</td>
</tr>
<tr>
<td>10.4</td>
<td>22.390</td>
<td>3.456</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temp. (°F)</th>
<th>Resistance (Ω)</th>
<th>Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2</td>
<td>21.410</td>
<td>3.408</td>
</tr>
<tr>
<td>14.0</td>
<td>20.480</td>
<td>3.360</td>
</tr>
<tr>
<td>15.8</td>
<td>19.580</td>
<td>3.310</td>
</tr>
<tr>
<td>17.6</td>
<td>18.730</td>
<td>3.260</td>
</tr>
<tr>
<td>19.4</td>
<td>17.920</td>
<td>3.209</td>
</tr>
<tr>
<td>21.2</td>
<td>17.160</td>
<td>3.159</td>
</tr>
<tr>
<td>23.0</td>
<td>16.430</td>
<td>3.108</td>
</tr>
<tr>
<td>24.8</td>
<td>15.740</td>
<td>3.057</td>
</tr>
<tr>
<td>26.6</td>
<td>15.080</td>
<td>3.006</td>
</tr>
<tr>
<td>28.4</td>
<td>14.450</td>
<td>2.955</td>
</tr>
<tr>
<td>30.2</td>
<td>13.860</td>
<td>2.904</td>
</tr>
<tr>
<td>32.0</td>
<td>13.290</td>
<td>2.853</td>
</tr>
<tr>
<td>33.8</td>
<td>12.740</td>
<td>2.801</td>
</tr>
<tr>
<td>35.6</td>
<td>12.220</td>
<td>2.750</td>
</tr>
<tr>
<td>37.4</td>
<td>11.720</td>
<td>2.698</td>
</tr>
<tr>
<td>39.2</td>
<td>11.250</td>
<td>2.647</td>
</tr>
<tr>
<td>41.0</td>
<td>10.800</td>
<td>2.596</td>
</tr>
<tr>
<td>42.8</td>
<td>10.370</td>
<td>2.545</td>
</tr>
<tr>
<td>44.6</td>
<td>9.959</td>
<td>2.495</td>
</tr>
<tr>
<td>46.4</td>
<td>9.569</td>
<td>2.445</td>
</tr>
<tr>
<td>48.2</td>
<td>9.195</td>
<td>2.395</td>
</tr>
<tr>
<td>50.0</td>
<td>8.839</td>
<td>2.346</td>
</tr>
<tr>
<td>51.8</td>
<td>8.494</td>
<td>2.296</td>
</tr>
<tr>
<td>53.6</td>
<td>8.166</td>
<td>2.248</td>
</tr>
<tr>
<td>55.4</td>
<td>7.852</td>
<td>2.199</td>
</tr>
<tr>
<td>57.2</td>
<td>7.552</td>
<td>2.151</td>
</tr>
<tr>
<td>59.0</td>
<td>7.266</td>
<td>2.104</td>
</tr>
<tr>
<td>60.8</td>
<td>6.992</td>
<td>2.057</td>
</tr>
<tr>
<td>62.6</td>
<td>6.731</td>
<td>2.012</td>
</tr>
<tr>
<td>64.4</td>
<td>6.481</td>
<td>1.966</td>
</tr>
<tr>
<td>66.2</td>
<td>6.242</td>
<td>1.922</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temp. (°F)</th>
<th>Resistance (Ω)</th>
<th>Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.0</td>
<td>6.013</td>
<td>1.878</td>
</tr>
<tr>
<td>69.8</td>
<td>5.792</td>
<td>1.834</td>
</tr>
<tr>
<td>71.6</td>
<td>5.581</td>
<td>1.791</td>
</tr>
<tr>
<td>73.4</td>
<td>5.379</td>
<td>1.749</td>
</tr>
<tr>
<td>75.2</td>
<td>5.185</td>
<td>1.707</td>
</tr>
<tr>
<td>77.0</td>
<td>5.000</td>
<td>1.667</td>
</tr>
<tr>
<td>78.8</td>
<td>4.821</td>
<td>1.626</td>
</tr>
<tr>
<td>80.6</td>
<td>4.650</td>
<td>1.587</td>
</tr>
<tr>
<td>82.4</td>
<td>4.487</td>
<td>1.549</td>
</tr>
<tr>
<td>84.2</td>
<td>4.329</td>
<td>1.511</td>
</tr>
<tr>
<td>86.0</td>
<td>4.179</td>
<td>1.474</td>
</tr>
<tr>
<td>87.8</td>
<td>4.033</td>
<td>1.437</td>
</tr>
<tr>
<td>89.6</td>
<td>3.894</td>
<td>1.401</td>
</tr>
<tr>
<td>91.4</td>
<td>3.760</td>
<td>1.366</td>
</tr>
<tr>
<td>93.2</td>
<td>3.631</td>
<td>1.332</td>
</tr>
<tr>
<td>95.0</td>
<td>3.508</td>
<td>1.298</td>
</tr>
<tr>
<td>96.8</td>
<td>3.390</td>
<td>1.266</td>
</tr>
<tr>
<td>98.6</td>
<td>3.276</td>
<td>1.234</td>
</tr>
<tr>
<td>100.4</td>
<td>3.167</td>
<td>1.203</td>
</tr>
<tr>
<td>102.2</td>
<td>3.062</td>
<td>1.172</td>
</tr>
<tr>
<td>104.0</td>
<td>2.962</td>
<td>1.143</td>
</tr>
<tr>
<td>105.8</td>
<td>2.864</td>
<td>1.113</td>
</tr>
<tr>
<td>107.6</td>
<td>2.770</td>
<td>1.085</td>
</tr>
<tr>
<td>109.4</td>
<td>2.680</td>
<td>1.057</td>
</tr>
<tr>
<td>111.2</td>
<td>2.593</td>
<td>1.030</td>
</tr>
<tr>
<td>113.0</td>
<td>2.510</td>
<td>1.003</td>
</tr>
<tr>
<td>114.8</td>
<td>2.429</td>
<td>0.977</td>
</tr>
<tr>
<td>116.6</td>
<td>2.352</td>
<td>0.952</td>
</tr>
<tr>
<td>118.4</td>
<td>2.278</td>
<td>0.928</td>
</tr>
<tr>
<td>120.2</td>
<td>2.206</td>
<td>0.904</td>
</tr>
</tbody>
</table>
Ref. 7) Service part lists of each circuit board.

<table>
<thead>
<tr>
<th>NO</th>
<th>CODE-NO</th>
<th>PART NAME</th>
<th>SPECIFICATION</th>
<th>Q'TY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DA41-00104E</td>
<td>Main PCB ASS'Y</td>
<td>Dispenser with CoolSelect Zone™</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>DA41-00134A</td>
<td>Main PCB ASS'Y</td>
<td>Dispenser</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>DA41-00105C</td>
<td>PANEL PCB ASS' Y</td>
<td>Dispenser with CoolSelect Zone™</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>DA41-00105D</td>
<td>PANEL PCB ASS' Y</td>
<td>Dispenser</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>DA32-00006B</td>
<td>R-DEFROST Sensor</td>
<td>502AT, PX-41C</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>DA32-10109V</td>
<td>Ambient Temp. Sensor</td>
<td>502AT, PX-41C</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>DA32-10109W</td>
<td>F-Temp.Sensor</td>
<td>502AT, PX-41C</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>DA32-00006A</td>
<td>F-DEFROST Sensor</td>
<td>502AT, PX-41C</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>DA32-10105U</td>
<td>R-Temp.Sensor</td>
<td>502AT, PX-41C</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>DA32-10109X</td>
<td>CoolSelect Zone™ Sensor</td>
<td>502AT, PX-41C</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>DA41-00108A</td>
<td>CoolSelect Zone™ PCB ASS' Y</td>
<td>CoolSelect Zone™ MAIN+PANEL</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>3301-000016</td>
<td>FERRITE CORE (LOCK TYPE)</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>DA27-00002A</td>
<td>NOISE FILTER</td>
<td>Commonly used in ET-PJT</td>
<td>1</td>
</tr>
</tbody>
</table>

※ The last no. of the code number such as DA41-xxxx? for the Main PCB-ASS’Y could be changed by MICOM and option.